Forum Discussion

bqlehmann's avatar
8 years ago

Donut Boxes: Using Stat to Uncover the Truth

There's been a lot of discussion on the forums on the best method of opening "Bonus Level Up" donut boxes. Should you use a pattern? Should you always pick the first? The last?

I decided to apply a little high school statistics to this problem, since I hadn't seen anyone do that here yet.

There could be multiple ways to go about this, but I chose to test this question: Is always choosing the third donut box going to average out to two donuts?

Short answer: Yes.

I leveled up 3,000 times in the last few weeks, always choosing only the third box. If I got one or two donuts, I just collected them - I didn't pay to open a box after that one.

The results:
1 Donut: 981 (32.7%)
2 Donuts: 1,007 (33.6%)
3 Donuts: 1,012 (33.7%)

Average donuts: 2.010

So it looks like maybe choosing the third box every time gave me a slight advantage, right? Well, no, not really. Not according to statistics. Here's why.

In any large random sample, you expect some variation due to chance. So if you flip a fair coin 100 times, you don't expect to always get 50 heads. A fair coin will sometimes give only 48 or 49 heads. Or more rarely, maybe even 40 heads.

How can you know if it's "close enough"? You conduct a Chi-Square Goodness of Fit Test. Basically, you compare the number of each donut box you got against how many you expected, then check out how likely that variation is due to random chance.

If you really want to relive your high school days, you can check out http://stattrek.com/chi-square-test/goodness-of-fit.aspx for details on how to do this.

Our null hypothesis is that the third donut box has a 1/3 chance of being 1, 2, or 3 donuts. Our alternate hypothesis is that they're not 1/3 chances.

In my case, the above numbers give me a Chi-Square value 0.55. Is that good or bad? Well, you can check it out on a table such as https://www.medcalc.org/manual/chi-square-table.php

To use that table, we have two degrees of freedom, so look in the row for DF = 2. Then notice that our Chi-Square statistic falls somewhere between the 0.975 and 0.20 columns. You don't get suspicious in stat until you reach all the way into 0.05 territory, which in our case WOULD be a Chi-Square value of 5.99.

Since our statistic of 0.55 is WAY less than 5.99, we accept the null hypothesis that your chances are 1 in 3 for 1, 2, or 3 donuts in the third box.

Any questions? Would anyone like to suggest a different method for choosing donut boxes that we could apply statistics to?

About The Simpsons Tapped Out General Discussion

Talk about your The Simpsons: Tapped Out experience with other TSTO players.

49,405 PostsLatest Activity: 26 minutes ago